Involvement of dopamine system in regulation of Na+,K+-ATPase in the striatum upon activation of opioid receptors by morphine.
نویسندگان
چکیده
The striatum is believed to be a crucial brain region associated with drug reward. Adaptive alteration of neurochemistry in this area might be one potential mechanism underlying drug dependence. It has been proposed that the dysfunction of Na+,K+-ATPase function is involved in morphine tolerance and dependence. The present study, therefore, was undertaken to study the adaptation of the striatal Na+,K+-ATPase activity in response to morphine treatment. The results demonstrated that in vivo short-term morphine treatment stimulated Na+,K+-ATPase activity in a dose-dependent manner. This action could be significantly inhibited by D2-like dopamine receptor antagonist S(-)-3-chloro-5-ethyl-N-[(1-ethyl-2-pyrrolidinyl)methyl]-6-hydroxy-2-methoxybenzamine (eticlopride). Contrary to shortterm morphine treatment, long-term morphine treatment significantly suppressed Na+,K+-ATPase activity. This effect could be significantly inhibited by D(1)-like dopamine receptor antagonist R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride (SCH 23390). However, both short-term and long-term morphine treatment-induced changes in Na+,K+-ATPase activity could be reversed by opioid receptor antagonist naltrexone. It was further found that cAMP-dependent protein kinase (PKA) was crucially involved in regulating Na+,K+-ATPase activity by morphine. Different regulation of the phosphorylation levels of the alpha3 subunit of Na+,K+-ATPase by PKA was related to the distinct modulations of Na+,K+-ATPase by short-term and long-term morphine treatment. Short-term morphine treatment inhibited PKA activity and then decreased the phosphorylation of Na+,K+-ATPase, leading to increase in enzyme activity. These effects were sensitive to eticlopride or naltrexone. Conversely, long-term morphine treatment stimulated PKA activity and then increased the phosphorylation of Na+,K+-ATPase, leading to the reduction of enzyme activity. These effects were sensitive to SCH 23390 or naltrexone. These findings demonstrate that dopamine receptors are involved in regulation of Na+,K+-ATPase activity after activation of opioid receptors by morphine.
منابع مشابه
Involvement of cAMP/cAMP-dependent protein kinase signaling pathway in regulation of Na+,K+-ATPase upon activation of opioid receptors by morphine.
The depolarization of neurons induced by impairment of Na+,K+-ATPase activity after long-term opiate treatment has been shown to involve the development of opioid dependence. However, the mechanisms underlying changes in Na+,K+-ATPase activity after opioid treatment are unclear. The best-established molecular adaptation to long-term opioid exposure is up-regulation of the cAMP/cAMP-dependent pr...
متن کاملSynergistically interacting dopamine D1 and NMDA receptors mediate nonvesicular transporter-dependent GABA release from rat striatal medium spiny neurons.
Given the complex interactions between dopamine D1 and glutamate NMDA receptors in the striatum, we investigated the role of these receptors in transporter-mediated GABA release from cultured medium spiny neurons of rat striatum. Like NMDA receptor-mediated [(3)H]-GABA release, that induced by prolonged (20 min) dopamine D1 receptor activation was enhanced on omission of external calcium, was a...
متن کاملM echanisms involved in morphine - induced activation of synaptosomal 1 1 Na , K - ATPase * ́ ́
Morphine through m-opioid receptors and G proteins modulates several cellular effector systems; however, the mechanisms involved i / o 1 1 in the regulation of Na ,K -ATPase are not well known. We evaluated the effect of two m-opioid receptor agonists on ouabain-sensitive 1 1 Na ,K -ATPase activity in mice forebrain synaptosomes, and examined the modulation of this effect by antagonists of opio...
متن کاملO-10: A Marked Animal-Vegetal Polarity in The Localization of Na+,K+-ATPase Activity and Its Down-Regulation Following Progesterone-Induced Maturation
Background: Polarized cells are key to the process of differentiation. Xenopus oocyte is a polarized cell that has complete blue-print to differentiate 3 germ layers following fertilization, as key determinant molecules (Proteins and RNAs) are asymmetrically localized. The objective of this work was to localize Na+, K+-ATPase activity along animal-vegetal axis of polarized Xenopus oocyte and fo...
متن کاملMorphine-Induced Analgesic Tolerance Effect on Gene Expression of the NMDA Receptor Subunit 1 in Rat Striatum and Prefrontal Cortex
Introduction: Morphine is a potent analgesic but its continual use results in analgesic tolerance. Mechanisms of this tolerance remain to be clarified. However, changes in the functions of μ-opioid and N-Methyl-D-aspartate (NMDA) receptors have been proposed in morphine tolerance. We examined changes in gene expression of the NMDA receptor subunit 1 (NR1) at mRNA levels i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular pharmacology
دوره 71 2 شماره
صفحات -
تاریخ انتشار 2007